On the nonlinear rational difference equation

E. M. Elabbasy ${ }^{1}$, A. A. El-biaty ${ }^{2}$
${ }^{1}$ Mansoura University, ${ }^{2}$ Tikrit University
${ }^{1}$ emelabbasy@mans.edu.eg, ${ }^{2}$ aaalbayaty77@gmail.com

Abstract

We investigate some qualitative behavior of the solutions of the difference equation $x_{n+1}=a x_{n-\ell}+\left(b x_{n-k} / c x_{n-s}+d x_{n-k}\right)$ where the initial conditions $x_{-r}, x_{-r+1}, \ldots, x_{0}$ are arbitrary positive real numbers such that $r \stackrel{n+1}{=} \max \{\ell, k, s\}$ where $i, r \in\{0,1, \ldots\}$ and a, b, c, d are positive constants.

keywords - difference equation, Stability, Periodicity, boundedness, global Stability.

1 Introduction

T
In this paper we deal with some properties of the solutions of the difference equation

$$
\begin{aligned}
& x_{n+1}=a x_{n-1}+\left(b x_{n-k} / c x_{n-s}+d x_{n-k}\right), n=0,1,2, \ldots, \quad \text { (1.1) } \\
& 0 \text { tho }
\end{aligned}
$$

where the the initial conditions $x_{-r}, x_{-r+1}, \ldots, x_{0}$ are arbitrary positive real numbers such that ${ }^{-r+1} r=\max \{\ell, k, s\}$ where $i, r \in\{0,1, \ldots\}$ and a, b, c, d are positive constants. There is a dass of nonlinear difference equations, known as the rational difference equations, each of which consists of the ratio of two polynomials in the sequence terms in the same form. there has been a lot of work concenring the global asympototic of solutions of rational difference equations [1], [2], [3], [5], [6], [8], [10] and [11].

Many reseaches have investigated the behavior of the solution of difference equation for example:

Stevic [11] has studied the stability, global attractor, and the periodic character of solutions of the equation

$$
x_{n+1}=\alpha x_{n}+\left(x_{n-1} / x_{n}\right) .
$$

Our aim in this paper is to extend and generalize the work in [11]. That is, we will investigate the global behavior of (1.1) including the asymptotical stability of equilibrium points, the existence of bounded solution, and the existence of period two solution of the recursive sequence of Eq. (1.1)

Now we recall some well-known results, which will be useful in theinvestigation of (1.1) and which are given in [7].

Let I be an interval of real numbers and let
$F: I^{k+1} \rightarrow I$,
where F is a continuous function. Consider the difference equation

$$
\begin{equation*}
x_{n+1}=F\left(x_{n}, x_{n-1}, \ldots, x_{n-k}\right), \quad n=0,1,2, \ldots, \tag{1.2}
\end{equation*}
$$

with the initial condition $x_{-k}, x_{-k+1}, \ldots, x_{0} \in I$.
D efinition 1 (Equilibrium Point)
A point $x \in I$ is called an equilibrium point of Eq. (1.2) if

$$
x=f(x, x, \ldots, x) .
$$

That is, $x_{n}=\bar{x}$ for $n \geq 0$, is a solution of Eq. (1.2), or equivalently, \bar{x} is a fixsed point of f.

D efinition 2 (Stability)

Let $x \in(0, \infty)$ be an equilibrium point of Eq. (1.2). Then
(i) An equilibrium point x of Eq. (1.2) is called locally stable if for every $\varepsilon>0$ there exists $\delta>0$ such that, if $\quad x_{-r,} x_{-r+1}, \ldots, x_{0} \in(0, \infty)$ with $\left|x_{-r}-x\right|+\left|x_{-r+1}-x\right|+\ldots+\left|x_{0}-x\right|<\delta \quad$ then
(ii) An equilibrium point \bar{x} of Eq. (2) is called locally asymptotically stable if \bar{x} is locally stable and there exists $\gamma>0$ such that, if

$$
\begin{aligned}
& x_{-r}, x_{-r+1}, \ldots, x_{0} \in(0, \infty) \\
& \left|x_{-r}-\bar{x}\right|+\left|x_{-r+1}-\bar{x}\right|+\ldots+\left|x_{0}-\bar{x}\right|<\gamma, \text { then }
\end{aligned}
$$

$$
\lim _{n-\infty} x_{n}=\bar{x}
$$

(iii) An equilibrium point \bar{x} of Eq. (1.2) is called a global attractor if for every $x_{-r}, x_{-r+1}, \ldots, x_{0} \in(0, \infty)$ we have

$$
\lim _{n \rightarrow \infty} x_{n}=\bar{x}
$$

(iv) An equilibrium point \bar{x} of Eq. (1.2) is called globally asymptotically stable if x is locally stable and a global attractor.
(v) An equilibrium point \bar{x} of Eq. (1.2) is called unstable if x is not locally stable.
D efinition 3 (Permanence)
Eq. (1.2) is called permanent if there exists numbers m and M with $0<m<M<\infty$ such that for any initial conditions $x_{-r}, x_{-r+1}, \ldots, x_{0} \in(0, \infty)$ there exists a positive integer N which depends on the initial conditions such that $m \leq x_{n} \leq M \quad$ for all $n \geq N$.

Definition 4 (Periodicity)

A sequence $\left\{x_{n}\right\}_{n=-n}^{\infty}$ is said to be periodic with period p if $x_{n+p}=x_{n}$ for all $n \geq-r$. A sequence $\left\{x_{n}\right\}_{n=-r}^{\infty}$ is said to be periodic with prime period p if p is the smallest positive integer having this property.

The linearized equation of Eq. (1.2) about the equilibrium point x is defined by the equation

$$
\begin{equation*}
z_{n+1}=\sum_{i=0}^{k} p_{i} z_{n-i}=0 \tag{1.3}
\end{equation*}
$$

where

$$
\begin{equation*}
p_{i}=\partial F(\bar{x}, \bar{x}, \ldots, \bar{x},) / \partial x_{n-i}, \quad i=0,1, \ldots, k \tag{1.4}
\end{equation*}
$$

The characteristic equation associated with Eq. (1.3) is
$\lambda^{k+1}-p_{0} \lambda^{k}-p_{1} \lambda^{k-1}-\ldots-p_{k-1} \lambda-p_{k}=0$.
Theorem 1.1[7] Let $[a, b]$ be an interval of real numbers
and assume that

$$
f:[a, b]^{3} \rightarrow[a, b]
$$

is a continuous function satisfying the following properties: $f(u, v, w)$ is non-increasing in $w \in[a, b]$ for each u and $v \in[a, b]$, and is non-decreasing in u and $v \in[a, b]$ for each $w \in\left[a_{2} b\right]$.

If $(m, M) \in[a, b] \times[a, b]$ is a solution of the system $m=f(m, m, M)$ and $M=f(M, M, m)$,
implies

$$
m=M
$$

Theorem 1.2 [7]. A ssume that F is a $C^{1}-$ function and let x be an equilibrium point of Eq. (1.2). Then the following statements are true:

If all roots of Eq. (1.4) lie in the open unit disk $|\lambda|<1$, then he equilibrium point x is locally asymptotically stable.

If at least one root of Eq. (1.4) has absolute value greater than one, then the equilibrium point x is unstable.

If all roots of Eq. (1.4) have absolute value greater than one, then the equilibrium point x is a source.

Theorem 1.3 [9] Assume that $p_{i} \in R, i=1,2, \ldots, k$. Then

$$
\sum_{i=1}^{k}\left|p_{i}\right|<1
$$

is a sufficient condition for the asymptoticcally stable of Eq. (1.5)

$$
\begin{equation*}
y_{n+k}+p_{1} y_{n+k-1}+\ldots+p_{k} y_{n}=0, n=0,1, \ldots \tag{1.5}
\end{equation*}
$$

2 LOCAL STABILITY OF THE EQUILIBRIUM POINT

In this section we investigate the local stability character of the solutions of Eq. (1.1). Eq. (1.1) has a unique nonzero equilibrium point

$$
\bar{x}=a \bar{x}+(b \bar{x} /(c+d) \bar{x})
$$

if $(1-a)>0$, then the only positive equilibrium point of Eq. (1.1) is given by

$$
\bar{x}=(b /(c+d)(1-a))
$$

Let $f:(0, \infty)^{3} \rightarrow(0, \infty)$ be a function defined by $f(u, v, w)=a u+(b v / b w+d v)$.
Therefore it follows that

$$
\begin{gather*}
\partial f(u, v, w) / \partial u=a \tag{2.1}\\
\partial f(u, v, w) / \partial v=\left(b c w /(c w+b v)^{2}\right)
\end{gather*}
$$

and

$$
\partial f(u, v, w) / \partial w=\left(-b c v /(c w+b v)^{2}\right)
$$

Then we see that

$$
\partial f(\bar{x}, \bar{x}, \bar{x}) / \partial u=a=-c_{0}
$$

and

$$
\partial f(\bar{x}, \bar{x}, \bar{x}) / \partial v=(c(1-a) /(c+d))=-c_{1}
$$

$$
\partial f(\bar{x}, \bar{x}, \bar{x}) / \partial w=(-c(1-a) /(c+d))=-c_{2}
$$

Then the linearized equation of (1.1) about x is

$$
\begin{equation*}
z_{n+1}=\sum_{i=0}^{k} p_{i} z_{n-i} \tag{2.2}
\end{equation*}
$$

Theorem 2.1 Assume that

$$
c<d .
$$

Than the equilibrium point of Eq. (1.1) is locally stable.
Proof. It is follows by Theorem(1.3) that, Eq. (2.2) is locally
stableif

$$
\left|p_{2}\right|+\left|p_{1}\right|+\left|p_{0}\right|<1
$$

This implies that

$$
a(c+d)+c(1-a)+c(1-a)<c+d
$$

then

$$
2 c(1-a)<(c+d)(1-a)
$$

Thus

$$
c<d
$$

Hence, the proof is completed.
Example 2.1 Consider the difference equation
$x_{n+1}=0.1 x_{n-\ell}+\left(3 x_{n-k} / x_{n-s}+2 x_{n-k}\right)$,
where $\quad a=0.1, b=3, c=1, d^{n+1}=2 .^{n-s}$ Figure(2.1), shows that the equilibrium point of Eq. (1.1) has locally stable, with initial data $x_{-2}=1.2, x_{-1}=1.1, x_{0}=0.5$.

Figure 2.1

3 Periodic solutions

Theorem 3.1 Eq. (1.1) has positive prime priod two solution only If
(i) $\ell, s-e v e n, k-o d d$ and $(c-d)(1+a)>4 a c$.

Proof. Assume that there exists a prime period-two solution

$$
\ldots, p, q, p, q, \ldots
$$

of (1.1). Let $\quad x_{n}=\cdots, x_{n+1}=p . \quad$ Since $\quad \ell, s-e v e n, k$ - odd, we have $x_{n-\ell}, x_{n-s}^{n+1}=q, x_{n-k}=p$. Thus, from Eq. (1.1), we get

$$
p=a q+(b p / c q+d p)
$$

and

$$
q=a p+(b q / c p+d q)
$$

Than

$$
\begin{equation*}
c p q+d p^{2}=a c q^{2}+a d p q+b p \tag{3.2}
\end{equation*}
$$

and

$$
\begin{equation*}
c p q+d q^{2}=a c p^{2}+a d p q+b q \tag{3.3}
\end{equation*}
$$

Subtracting (3.2) from (3.3) gives

$$
d\left(p^{2}-q^{2}\right)=a c\left(q^{2}-p^{2}\right)+b(p-q) .
$$

Since $p \neq q$, we have

$$
\begin{equation*}
p+q=(v / d+a c) . \tag{3.4}
\end{equation*}
$$

Also, since p and q are positive again, adding (3.2) and (3.3) yields
$2 c p q+d\left(p^{2}+q^{2}\right)=a\left(p^{2}+q^{2}\right)+2 a d p q b(p+q)$.
It follows by (3.4), (3.5) and the relation
$p^{2}+q^{2}=(p+q)^{2}-2 p q, \quad \forall p, q \in \mathrm{R}$,
that
$p q=\left(b^{2} a c /(d+a c)^{2}(c-d)(1+a)\right)$.
It is clear now, from Eq. (3.4) and Eq. (3.6) that p and q are the two distinct roots of the quadratic equation
$t^{2}-(b / d+a c) t+\left(b^{2} a c /(d+a c)^{2}(c-d)(1+a)\right)=0$,
and so

$$
(b / d+a c)^{2}-\left(4 b^{2} a c /(d+a c)^{2}(c-d)(1+a)\right)>0,
$$

which is equivalent to

$$
(c-d)(1+a)>4 a c
$$

Hence, the proof is completed.

Example 3.1 Consider the difference equation

$x_{n+1}=0.125 x_{n-\ell}+\left(x_{n-k} / 0.5 x_{n-s}+0.4 x_{n-k}\right)$, where
$\ell, s-$ even, $k-$ odd $, a=0.125, c=0.5, b=1, d=0.4$.
Figure(3.1), shows that Eq. (1.1) which is periodic with period two. Where the initial data satisfies condition(3.1) of Theo$\operatorname{rem}(3.1) x_{n-2}=0.2, x_{-1}=1.3, x_{0}=0.5$. (seeTable 3.1)

n	$x(n)$
1	0.2000
2	1.3000
3	0.5000
4	1.6479
5	0.3951
6	1.2319
7	0.3562
8	1.1844
9	0.3330
10	1.2195
11	0.3224
12	1.2769
13	0.3171
14	1.3244
15	0.3149
16	1.3570

n	$x(n)$
17	0.3146
18	1.3761
19	0.3152
20	1.3854
21	0.3159
22	1.3885
23	0.3165
24	1.3885
25	0.3168
26	1.3874
27	0.3160
28	1.3864
29	0.3170
30	1.3857
31	0.3170
32	1.3853

n	$x(n)$
65	0.3169
66	1.3852
67	0.3169
68	1.3852
69	0.3169
70	1.3852
71	0.3169
72	1.3852
73	0.3169
74	1.3852
75	0.3169
76	1.3852
77	0.3169
78	1.3852
79	0.3160
80	1.3852

Table 3.1

Figure 3.1

4 Bounded Solution

Our aim in this section we investigate the boundedness of the positive solutions of Eq. (1.1).

Theorem 4.1 For Eq. (1.1) every solution is bounded if $1>a$.

Proof. Let $\left\{x_{n}\right\}_{n=-r}^{\infty}$ be a solution of Eq. (1.1). It follows from Eq. (1.1) that
$x_{n+1}=\leq a x_{n-\ell}+\left(b x_{n-k} / d x_{n-k}\right)=a x_{n-\ell}+(b / d)$ forall $n \geq 1$.
By using a comparison, we can write the right hand side as follows

$$
\begin{gathered}
y_{n+1}=a y_{n-\ell}+(b / d), \\
\text { then } \\
y_{n}=a^{n} y_{-\ell}+(b / d),
\end{gathered}
$$

and this equation is locally stable because $1>a$, and converges to the equilibrium point

$$
y=(b / d(1-a)) .
$$

Therefore

$$
\lim _{n \rightarrow \infty} \sup x_{n} \leq b / d(1-a) .
$$

Thus, for Eq. (1.1) every solutoin is bounded and the proof is completed.

Theorem 4.2 For Eq. (1.1) every solution is unbounded if $1<a$.

Proof. Let $\left\{x_{n}\right\}_{i=-r}^{\infty}$ be a solution of Eq. (1.1). It follows from Eq. (1.1) then
$x_{n+1}=a x_{n-\ell}+\left(b x_{n-k} / c x_{n-s}+d x_{n-k}\right)>a x_{n-\ell}$ forall $n \geq 1$.
We can written as follows
then

$$
y_{n+1}=a y_{n-\ell},
$$

$$
\begin{equation*}
y_{n}=a^{n} y_{-\ell} \tag{4.1}
\end{equation*}
$$

and the Eq. (4.1) is unstable because $1<a$, and

$$
\lim _{n \rightarrow \infty} y_{n}=\infty
$$

Thus, the proof is completed.
Example 4.1 Consider the difference equation
where $\quad x_{n+1}=0.8 x_{n-\ell}+\left(2 x_{n-k} x_{n-s}+2 x_{n-k}\right)$,
where $k=1, \ell=2, s=2, a=0.8, b=2, c=1, d=2$. Figure(4.1), shows that the Eq. (1.1) has bounded, with initial data $x_{-2}=0.3, x_{-1}=0.2, x_{0}=0.1$.

Figure 4.1
Example 4.2 Consider the difference equation

$$
\begin{aligned}
& x_{n+1}=x_{n-\ell}+\left(2 x_{n-k} / x_{n-s}+2 x_{n-k}\right), \\
& \text { where } k=1, \ell=2, s=2, a=1, b=2, c=1, d=2 \text {. }
\end{aligned}
$$

Figure(4.2), shows that the Eq. (1.1) has unbounded, with initial data $x_{-2}=0.3, x_{-1}=0.2, x_{0}=0.1$.

Figure 4.2

5 Global Attractor of the Equilibrium point of Eq. (1.1)

This section is devoted to investigate the global attractivity character of solutions of Eq. (1.1)
Theorem 5.1 if $a<1$ and $c<d$ then the equilibrium point
x of Eq. (1.1) is global attractor.
Proof. Let $f:(0, \infty)^{3} \rightarrow(0, \infty)$ be a function defined by Eq. (2.1). Therefore

$$
\begin{gathered}
\partial f(u, v, w) / \partial u=a \\
\partial f(u, v, w) / \partial v=\left(b c w /(c w+d v)^{2}\right)
\end{gathered}
$$

and

$$
\partial f(u, v, w) / \partial w=\left(-b c v /(c w+d v)^{2}\right) .
$$

Than we can easily see that the function $f(u, v, w)$ increasing in u, v and decreasing in W.
suppose that (m, M) is a solution of the system

$$
m=f(m, m, M) \text { and } \quad M=f(M, M, m) .
$$

Then from Eq. (1.1).we see that
$m=a m+(b m / c M+d m), \quad M=a M+(b M / c m+d M)$
$m(1-a)=(b m / c M+d m), \quad M(1-a)=(b M / c m+d M)$,
then

$$
(1-a / b)=(1 / c M+d m),(1-a / b)=(1 / c m+d M) .
$$

Thus

$$
M=m .
$$

It follows by Theorem(1.1) that x is a global attractor of Eq. (1.1) and then the proof is complete.

Remark 5.1 N ote that the special cases of Eq. (1.1) have been studied in [11] when
$k=1, \ell=0, s=0, a=\alpha, b=1, c=1, d=0$.

References

[1] E. M. Elabbasy, H. El-M etwally and E. M. Elsayed, On the periodic nature of somemax-typedifferenceequations, Int. J. Math. Sai., 14(2005), 2227-2239.
[2] E. M. Elabbasy, H. El-Metwally and E. M. Elsayed. On the difference equation $x_{n+1}=a x_{n}-\left(b x_{n} / c x_{n}-d x_{n-1}\right)$. Adv. Difference Equ., pages Art.ID 82579, 10 (2006).
[3] E.M. Elabbasy, H. El-Metwally and E.M. Elsayed. Qualitative behavior of higher order differenceequation. Soochow J. Math., 33(4) (2007), 861-873.
[4] E. M. Elabbasy, H. El-Metwally and E. M. Elsayed, On the difference equa-
 (2007), 101-113.
[5] S. N. Elaydi, An Introduction to differenceequations, Undergraduate Texts in Mathematics, Springer, New York, NY, USA, (1996).
[6] M. A. El-M oneam, E. M. E. Zayed, Dynamics of the rational difference equation $x_{n+1}=A x_{n}+B x_{n-k}+C x_{n-\ell}+\left(b x_{n} x_{n-k n-\ell} / d x_{n-k}-e_{n-\ell}\right)$, DCDISSer. A: Math. Anal. 21 (2014), 317-331.
[7] E.A. Grove, G. Ladas, Periodidities in nonlinear difference equations, vol. 4, Chapman and Hall / CRC, (2005).
[8] V.L. Kocic and G. Ladas, Global behavior of nonlinear differenceequations of higher order with application, Kluwer Academic Publishers, Dordrecht, (1993).
[9] M.R.S. Kulenovic, G. Ladas, Dynamics of second order rational difference equations with open problems and conjectures, Chapman \& Hall/ CRC, Florida, (2001).
[10] M. Salch and M. Alogeili. On the rational difference equation $x_{n+1}=A+\left(x_{n-k} / x_{n}\right)$ Appl. Math. Comput., 171(2) (2005), 862-869.
[11] S. Stevic, On the reaursive sequence $x_{n+1}=\alpha x_{n}+\left(x_{n-1} / x_{n}\right)$ III,dynam. Contin. Disc. Impuls. Syst. 10a (2003), 911-917.

